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The present work aims to describe, within a single phenomenological approach, the specific sequence of
phase transitions observed in the rare-earth manganites RMnO3 at zero magnetic field. It is shown that a single
integrated description of the temperature versus composition phase diagrams of these compounds and related
solid solutions can be obtained within the scope of Landau theory by adopting the so-called type-II description
of the modulated phases.
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I. INTRODUCTION

The Landau theory of phase transitions constitutes a pow-
erful tool to describe a great variety of phase transitions and,
in particular, phase transitions involving modulated phases.
The advantage of this phenomenological approach lies in its
ability to establish a direct and exact relationship between
the crystal symmetry and the physical properties of the
system.1 By establishing such a relationship, the theory al-
lows us to describe the behavior of macroscopic quantities
�such as the polarization, magnetization, dielectric constant,
etc.� and to interpret the observed anisotropy or the relevant
coupling mechanisms within one exact and symmetry-based
framework.

Over the last few years, a great deal of attention has been
paid to several metal compounds in which ferroelectricity is
induced by a transition to a complex magnetic state.2–10 In
this class of systems, external magnetic fields or chemical
pressure fields originated from the partial substitution of a
molecular unit are capable of rotating or stabilizing an elec-
trical polarization.11–17 Although these effects might mimic
single phase effects like ferromagnetoelectricity �the linear
magnetoelectric effect� or piezoelectricity, they result from
rather different mechanisms. Here, the magnetic or the stress
fields induce magnetic phase transitions which, in turn, alter
the symmetry of the system and modify the set of compatible
secondary order parameters. It is from this modification of
the symmetry that the change in the polar state of the system
originates. Therefore, in this class of compounds, the re-
markable cross effects between magnetic ordering and elec-
tric polarization relate essentially to the field of improper
ferroelectricity.

Among this novel class of compounds, the orthorhombic
manganites RMnO3 �R=Eu, Gd, Tb, Dy, Ho� and related
solid solutions such as Eu1−xYxMnO3, Gd1−xTbxMnO3, or
Dy1−xTbxMnO3 are those possessing the simplest crystallo-
graphic and magnetic structures. Because of this reason,
these compounds constitute adequate model systems in
which symmetry-based models can be explored. The present
work takes advantage of this fact to obtain, for these com-
pounds, a single integrated model capable of accounting for
the observed sequence of phase transitions. As it will be
shown, this integrated picture can be obtained within the
scope of the so-called type-II Landau description of the

modulated phases18 and can be used to interpret, model, and
organize the experimental data concerning the temperature
versus composition phase diagrams of the pure compounds
and of their solid solutions.

Landau models based on homogeneous magnetic order
parameters have been previously used to analyze the phase
transitions observed in several LaMnO3-based rare-earth sys-
tems. For example, the noncollinear magnetic structure of
LaMnO3 in an external magnetic field has been investigated
on the basis of a free-energy expansion in terms of the dif-
ferent manganese spin basis modes.19 A similar approach has
also been used to analyze the symmetry changes in the para-
magnetic �PM� to A-type antiferromagnetic �AFM� and to
ferromagnetic phase transitions in undoped and moderately
doped LaMnO3 �Ref. 20�. However, in these previous works,
the stabilization of modulated spin phases or the induction of
improper ferroic properties have not been addressed.

It should also be mentioned that the present study focus
essentially on insulating systems that are either pure rare-
earth compounds or mixed solid solutions of isoelectric ions.
In many manganese perovskites with a colossal magnetore-
sistence, charge-density waves may eventually coexist with
spin modulations. This coexistence and interaction of two
different types of order parameters can be analyzed within
the framework of Landau theory.21 However, because the
charge-density waves observed in these systems originate es-
sentially from the partial replacement of the trivalent rare-
earth ions by divalent alkaline-earth ions �R1−x

3+ AEx
2+MnO3�

we will not consider this type of order parameter. Hence, we
will focus here on pure magnetic spin modulated phases even
if the subtle coupling between lattice, spin, charge, and or-
bital degrees of freedom may still challenge our understand-
ing of this type of oxides.

II. PHASE TRANSITIONS IN THE DIFFERENT RMnO3

COMPOUNDS

At room temperature, the symmetry of the orthorhombic
rare-earth manganites RMnO3 is described by the paramag-
netic group G= �Pnma�� and the unit-cell possesses four mo-
lecular formulas �Z=4�.22 The magnetic phases observed at
lower temperatures result essentially from the ordering of the
Mn spins S�1, S�2, S�3, and S�4 which, in the paramagnetic phase,
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are located in the unit cell at the positions �0,0, 1
2 �, �1

2 ,0,0�,
�0, 1

2 , 1
2 �, and �1

2 , 1
2 , 0�, respectively. The spins of the rare-

earth ion may eventually play a role, especially at lower
temperatures, but we will ignore their contribution because
they are not essential for the understanding of the global
phase diagrams observed.

At the center of the Brillouin zone �k� =0�, the 12 compo-
nents of the Mn spins generate a reducible corepresentation
� of the paramagnetic space group, whose decomposition
into a direct sum of irreducible corepresentations leads to
�=3Ag

−
� 3B1g

−
� 3B2g

−
� 3B3g

− . Here, the �−� superscript sig-
nals the odd character of these corepresentations under time
reversal. To each irreducible corepresentation there will
correspond a set of magnetic basis modes, as specified in
Table I.

In this table, the basis modes are denoted as A� =S�1+S�2

−S�3−S�4, G� =S�1−S�2−S�3+S�4, F� =S�1+S�2+S�3+S�4, and C� =S�1

−S�2+S�3−S�4. This notation directly specifies the relative ori-
entation of the different spins.12 For example, for the mode
A� , the spins pairs �S�1 ,S�2� and �S�3 ,S�4� are oriented parallel to
each other within each set and both sets are antiferromagneti-
cally coupled.

As in the prototype case of LaMnO3 �Ref. 22�, the Mn3+

electronic configuration is t2g
3 eg

1, with the spin quantum num-
ber S=2. The three t2g

3 electrons are localized while the eg
electron orbitals are extended in the basal �010� plane23 and
are strongly hybridized with the oxygen p orbitals. The fer-
romagnetic superexchange interactions of the eg

1 electrons in
the �010� plane and the antiferromagnetic interactions of the
t2g
3 electrons out of the plane favor the onset, at low tempera-

tures, of one antiferromagnetic order of the A type �A AFM�.
This is well apparent in the set of systems ranging from La to
Sm, where a direct transition from the PM phase to one
A-AFM phase is observed. Here, the AFM order results pre-
cisely from the stabilization of the Ax irreducible magnetic
mode �see Table I�. Consequently, the system acquires a
symmetry described by the magnetic space group
Pnma�P1

21

m 1� �Ref. 24� and a canted ferromagnetic moment
directed along the b� axis.

However, smaller rare-earth ions �Eu3+, Gd3+ Tb3+, Y3+,
etc.� fit worse in the perovskite network and give rise to
more pronounced b-axis rotations of the Mn-O octahedra.
The Mn-O-Mn bonding angles diminish and the orthorhom-
bic distortion of the lattice increases as the ionic radius is
reduced.25 This effect weakens the in-plane ferromagnetic
superexchange interactions and modifies the orbital overlap
and the relative strength of the antiferromagnetic interaction
between the next-nearest neighbors Mn3+ spins. The ferro-
magnetic order of the in-plane spins tends to become
strongly frustrated.

At first, this geometrically driven effect simply decreases
the Néel temperature from 140 K �La� to 60 K �Sm�. How-
ever, beyond a certain threshold and within the range delim-
ited by Eu and Ho, the magnetic instability shifts from the
center to the interior of the Brillouin zone �along the � line�,
giving rise to an intermediate longitudinal incommensurate
�L-INC� phase, with a modulation wave vector k� =��T�a��

�Refs. 25–28�. The corresponding incommensurate order pa-
rameter is still irreducible and of the symmetry ��B2� �Refs.
4 and 29–31; see notation in Ref. 32�, containing therefore
the active mode Ax in the limit k�→0 �limk�→0 ��B2�=B2g

−

� B1u
+ �. Given the one-to-one relationship existing in this

case between each of the irreducible corepresentations of the
paramagnetic group and the symmetry of the corresponding
modulated phase,33 this L-INC phase must have the symme-
try described by the magnetic superspace group Pa�P

1̄1S

nma�
�Ref. 34�. This symmetry is incompatible with any ferroic or
linear magnetoelectric properties.

Figure 1 shows the value of the modulation wave number
observed immediately below the transition from the PM
phase, ��Ti�, as a function of the ionic radius Rion of the
rare-earth element �data taken from Ref. 25�. As seen, the
L-INC phase sets in at a location in the Brillouin zone that
varies linearly with Rion. Therefore, the instability of the PM
phase moves along a single magnon branch, approaching the
Brillouin-zone boundary �X point, �=1 /2� as Rion decreases
�see also Ref. 35�. This drift of ��Ti� can be extrapolated in
the direction of larger or smaller values of Rion. This extrapo-
lation indicates that the center and the border of the Brillouin
zone would be reached for Rion on the order of 113 pm and
102 pm, respectively. This latter value is very close to the
ionic radius of both Yb3+ and Lu3+ �100.8 pm and 100.1 pm,
respectively�, for which the orthorhombic RMnO3 system
shows direct transitions from the paramagnetic phase to one
E-type antiferromagnetic �E-AFM� phase36 �Refs. 35 and
37–40�. The observed E-AFM order consists of �101� rows
of spins coupling parallel to a neighboring row on one side
and antiparallel on the other with an antiparallel coupling
between �010� planes. This spin structure corresponds to the
one expected for the lock in of one order parameter of sym-

TABLE I. Possible magnetic basis modes originated from the
Mn3+ located in 4b Wyckoff positions.

Ag
−��1� B2g

− ��2� B3g
− ��3� B1g

− ��4�
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FIG. 1. �Color online� The ionic radius of the rare-earth ele-
ments �from Pr to Lu� plotted as a function of the modulation wave
number immediately below the stability limit of the paramagnetic
phase. The straight line from Ho to Eu is a linear fit. The points
marked by arrows at the ionic radii 101.77 and 113.19 pm were
obtained by extrapolation of that best fit.
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metry ��B2� at the Brillouin-zone edge k� = 1
2a�� �Ref. 39�, for

a global phase �=� /4 �Ref. 33�. The corresponding mag-
netic group is Pa�Pnm21� and a ferroelectric polarization di-
rected along the c axis is then allowed by symmetry.32 This
polarization is actually observed in the E-AFM phase of
HoMnO3, YbMnO3, or LuMnO3 �Refs. 16 and 41� �as well
as in the E-AFM phase of some nickelates42–45�. It provides
one striking example of improper ferroelectricity driven by
an irreducible and colinear magnetic order parameter. In con-
trast to the most extensively theoretically studied case of
spiral magnetism, the mechanism responsible for the polar
order does not rely here on the presence of an anisotropic
Dzyaloshinsky-Moriya interaction46,47 �see also Ref. 16� and
cannot be accounted for by the models designed for noncol-
linear magnets such as the spin current model,48 the electric
current cancellation model,49 or by the usual heuristic
pictures.50

The above observations can be summarized by saying
that, over the whole set of orthomanganese compounds, the
primary instability of the paramagnetic phase moves from
the center to the edge of the Brillouin zone along a single
magnon branch of symmetry ��B2�. This common symmetry
of the primary order parameter will be essential for our
present purposes. However, one additional question concern-
ing the possible role of other �secondary� magnetic distor-
tions must be analyzed in order to elucidate the relevant set
of magnetic order parameters. Let us first notice that, in sys-
tems such as TbMnO3 or DyMnO3, there occur, at lower
temperatures, cycloidal phases resulting from the stabiliza-
tion of order parameters of symmetry ��B2�+��A2� �at zero
magnetic field� or, in the case of TbMnO3, ��B2�+��A1�
under magnetic fields.29,51 Besides the primary branch ��B2�,
the additional branches involved here have symmetries ��A2�
and ��A1�. These branches correspond to spatial modulations
of the magnetic modes Ay and Az given in Table I
�limk�→0 ��A2�=B3g

−
� Au

+ and limk�→0 ��A1�=Ag
−

� B3u
+ �. Also,

in orthorhombic HoMnO3, for example, the observed diffrac-
tion patterns correspond to parent reflections �hkl� satisfying
h+ l=2n and k=2n+1 �n integer�.35 Given that the Mn3+ ions
occupy, in the paramagnetic unit cell, 4b Wyckoff sites, the
observed reflection conditions imply that the spin wave can
only include A modes. Hence, even if the Ax mode may be
seen as primary, all the three A modes seem to play a role in
the phase-transition sequences observed in the RMnO3 sys-
tem. Other nonmagnetic secondary order parameters that are
allowed by the symmetry must also be taken into account.

III. LANDAU FREE ENERGY

In the usual Landau theoretical framework for incommen-
surate systems, both the lock-in commensurate phase �either
homogeneous or modulated� and the incommensurate phase
are described by a common primary order parameter: the
symmetry of the primary distortion is kept invariant while
the modulation wave vector changes with temperature, com-
position or external fields.1 In the case of the orthorhombic
rare-earth manganites RMnO3, the modulation wave vector is
kept fixed along a main crystallographic direction �k� =�a���
and, as seen in the preceding section, the primary order pa-

rameter maintains its symmetry ��B2�, over the entire range
of the rare-earth elements. It is this common symmetry of the
primary parameter over the whole set of compounds that
allows us to deal with the different systems within one uni-
fied model.

One incommensurate phase is normally seen as a modu-
lation or a periodic distortion of a given underlying commen-
surate or lock-in phase. The dimension of the incommensu-
rate order parameter will therefore depend on the dimension
of the basic commensurate order parameter chosen for the
description. For the case in hands, if the lock-in wave vector
is located inside the Brillouin zone, then the commensurate
order parameter is a complex number representing the am-
plitude of the magnetic wave and its global phase with re-
spect to the underlying lattice. The incommensurate modula-
tion �the distortion of the lock-in phase� is here stabilized by
a Lifshitz invariant52 and the evolution of the wave number
toward its lock-in value originates from the competition be-
tween this term and the umklapp potentials favoring the
commensurate order. This case corresponds to the so-called
type-I description of an incommensurate phase.18 In the case
of the rare-earth manganites, this type of description has
been previously used to elucidate the relationship between
the symmetry of a given modulated magnetic phase, either
commensurate or incommensurate, and the primary ferroic
properties.32

If, on the other hand, the lock-in phase is taken as homo-
geneous �k� =0� then, for the symmetry here considered, the
order parameter is necessarily one dimensional and the Lif-
shitz invariant forbidden. In such a case, the stabilization of
a modulated spin structure may only be obtained by consid-
ering a free-energy density expansion containing invariants
which depend on the spatial derivatives of the one-
dimensional primary order parameter. This second descrip-
tion of a modulated incommensurate phase is called of the
type II.18 It is far more versatile if one wants to go beyond
the description of a particular phase transition and capture,
within a single phenomenological model, a sequence of
phase transitions, a temperature versus magnetic field, or a
temperature versus composition phase diagram involving a
single critical branch. This versatility has been well demon-
strated in the case of displacive systems such as sodium
nitrite,53 thiourea,54 or betaine calcium chloride dihydrate
�BCCD� �Ref. 55� and, with the necessary adaptations, can
be used for the case of the RMnO3 compounds.

A. Landau free-energy density

Let us then consider the problem of finding the adequate
type-II free-energy density expansion. For the chosen lock-in
wave vector �k� =0�, the primary order parameter is the Ax
magnetic mode. In order to accommodate the possible stabi-
lization of a modulated spin structure, the free-energy den-
sity must include terms depending on the spatial derivatives
of this mode. The symmetry constraints that are verified here
correspond exactly to those that are observed in displacive
systems such as NaNO2, SC�NH2�2, or BCCD.53–55 Conse-
quently, similar to these systems, this part of the free-energy
density can be written as
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f1 =
1

2
	xAx

2 +
1

4

xAx

4 −
1

2
�� �Ax

�X
�2

+
1

4
�� �2Ax

�X2 �2

+ Ax
2� �Ax

�X
�2

. �1�

The dispersive term Ax
2�

�Ax

�X �2 is symmetry allowed because
it is the product of two trivial invariants. It is this term that
imposes the temperature dependence of the modulation wave
vector, favoring energetically smaller or higher values of the
modulation wave vector if �0 or �0, respectively. Nega-
tive �−�� and positive ��� coefficients must be chosen in
order to stabilize a minimum in the dispersion of the qua-
dratic term at an arbitrary point of the Brillouin zone, a nec-
essary condition for the occurrence of modulated spin struc-
tures. As usual, we will take 	x=	0x�T−T0� with 	0x�0 and

x�0.56

In the case of the secondary magnetic order parameters Ay
and Az, we will adopt the simplest possible free energy den-
sity, limiting the expansion to terms up to the fourth order.
Also, the biquadratic mixed terms Ax

2Ay
2 and Ax

2Az
2 will be

considered to describe the coupling between the primary and
the secondary magnetic order parameters. Consequently, we
have

f2 =
1

2
	yAy

2 +
1

4

yAy

4 +
1

2
	zAz

2 +
1

4

zAz

4 + �1Ax
2Ay

2 + �1Ax
2Az

2.

�2�

Here, we will take 
y ,
z ,�1 ,�1�0 and 	y�z�=	y�z�0�T
−T1�2��, with T1�T0 and T2�T0. This latter choice means
that we will assume that the secondary magnetic order pa-
rameters also possess intrinsic instabilities, although at tem-
peratures lower than T0. Hence, in the absence of any inter-
action between the three magnetic order parameters �that is,
when �1=�1=0�, a sequence of second-order transitions
would occur between phases characterized by the order pa-
rameters Ax, Ax � Ay �or Ax � Az�, and Ax � Ay � Az. The posi-
tive sign chosen for �1 and �1, however, implies the possible
suppression of this phase sequence and the first-order char-
acter of an eventual transition between any two of these mag-
netic phases. Notice that for �1�0 and/or �1�0, trigger-
type phase transitions could occur even without any intrinsic
instability of the secondary magnetic order parameters.

In addition to the pure magnetic invariants considered so
far, we must also take into account other terms coupling the
magnetic degrees of freedom with other secondary param-
eters. Here, because we are interested in the possibility of
improper ferroelectricity or improper ferroelasticity, we will
consider the particular case of coupling terms that are linear
on one electric polarization or on one homogeneous lattice
strain. From the transformation properties of the first spatial
derivative of the primary parameter,

�Ax

�x and of products such
as Ay

dAx

dx , Az
dAx

dx , AyAx, and AyAx �see Table II�, it becomes
clear that the polarizations Py and Pz, �which are trans-
formed, under �Pnma��, as B2u

+ and B3u
+ , respectively�, along

with the lattice deformations exy and exz �B1g
+ and B2g

+ , respec-

tively� are potential secondary parameters allowed by sym-
metry. The contribution of these mixed terms to the free-
energy density is of the form57

f3 = �2Ay� �Ax

�X
�Py + �3AyAxexy + �2Az� �Ax

�X
�Pz + �3AzAxexz

+
Py

2

2�y
+

Pz
2

2�z
+

exy
2

2cxy
+

exz
2

2cxz
. �3�

Notice that, for simplicity, we have neglected invariants in-
volving more than two secondary parameters, such as
PxPyexy, PxPzexz, or AyAzeyz. This means that we are neglect-
ing the potential stabilization of phases with very low sym-
metry. Although these phases may play a role in the detailed
mechanisms for a given phase transition,33,58,59 they are not
essential for the global picture we pursue here. Also, we are
ignoring the eventual commensurate character of the spin
wave by not including eventual mixed umklapp terms that
are allowed for particular types of commensurate phases.32,33

The free-energy density f = f1+ f2+ f3 corresponds to the
simplest possible functional with the potential to describe the
observed zero-field phase diagrams of the RMnO3 com-
pounds. However, it still contains an undesirable large num-
ber of adjustable constants.

B. Reduced variables and some simplifying assumptions

As usual, the first step to improve the situation regarding
the number of model parameters is the elimination of a num-
ber of physically irrelevant coupling constants. This can be
achieved by expressing the free-energy density in terms of

dimensionless quantities. By defining g=
�2
x

16�4 f , Ai=
2�

��
x�1/2 Si,

X= � �
2� �1/2x,


x
1/2�

2�2�y
1/2 Py�z�= py�z�, ay�z�=

	y0�	z0�
	x0

, by�z�=

y�
z�


x
, �̄z

=
�z

�y
, t= �

8�2 	0x�T−T0�, 
x
−1�1��1�=�1��1�, �2��2�

=�2��2��
�y�

2
x�
�1/2, and �3��3�= �

4�2 �3��3�, one obtains the
simpler reduced free-energy density

TABLE II. Transformation properties of the terms bilinear in the
magnetic order parameters or involving the first-order spatial de-
rivative of the primary order parameter.

C2x C2y i �

x 1 −1 −1 1 B3u
+

Ax −1 1 1 −1 B2g
−

Ay 1 −1 1 −1 B3g
−

Az 1 1 1 −1 Ag
−

Ay
dAx

dx −1 1 −1 1 B2u
+

AyAx −1 −1 1 1 B1g
+

Az
dAx

dx −1 −1 −1 1 B3u
+

AzAx −1 1 1 1 B2g
+
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g�x� = tSx
2 +

1

4
Sx

4 −
1

4
� �Sx

�x
�2

+
1

4
� �2Sx

�x2 �2

+ �Sx
2� �Sx

�x
�2

+ ay�t − t1�Sy
2 +

1

4
bySy

4 + �1Sx
2Sy

2 + �2pySy� �Sx

�x
�

+ �3SxSyexy + az�t − t2�Sz
2 +

1

4
bzSz

4 + �1Sx
2Sz

2

+ �2pzSz� �Sx

�x
� + �3SxSzexz +

py
2

2
+

pz
2

2�̄z

+
exy

2

2c̄xy

+
exz

2

2c̄xz

.

�4�

Moreover, we will introduce two additional approximations
that will allow us to reduce further the number of the param-
eters and will help us to simplify the calculations to be made.
First, we notice that, for a cubic perovskite, �̄z=ay =az=by
=bz=1. Although this is no longer true in the presence of an
orthorhombic distortion, it seems reasonable to assume that
one can keep these values as a first approximation and elimi-
nate five nonessential adjustable parameters.60 We will also
use a simple plane wave to describe the magnetic modulation
induced by the primary order parameter Sx. This second ap-
proximation can be justified by noticing that, over the whole
temperature range of stability of the observed longitudinal or
cycloidal modulated phases, essentially only first-order mag-
netic satellites are observed in neutron or x-ray measure-
ments. The plane-wave approximation is therefore expected
to describe reasonably well the magnetic modulation over
the whole temperature and magnetic field ranges explored
experimentally. Accordingly, we will write in Eq. �4� Sx
=�x cos�qx�, obtaining

g�x� = �t cos2�qx� −
q2

4
sin2�qx� +

q4

4
cos2�qx���x

2

+
1

4
�cos4�qx� + 4�q2 sin2�qx�cos2�qx���x

4 + �t − t1�Sy
2

+
1

4
Sy

4 + �1Sy
2�x

2 cos2�qx� − �2Syq�xpy sin�qx�

+ �3Sy�xexy cos�qx� + �t − t2�Sz
2 +

1

4
Sz

4

+ �1Sz
2�x

2 cos2�qx� − �2qSz�xpz sin�qx�

+ �3Sz�xexz cos�qx� +
py

2

2
+

pz
2

2
+

exy
2

2c̄xy

+
exz

2

2c̄xz

. �5�

C. Nonmagnetic order parameters

The equilibrium value of a given secondary and nonmag-
netic order parameter X �here, as seen, X= Py, Pz, exz, or exy�
can be determined by imposing in Eq. �5� the condition �g

�X
=0. This leads to the following relations between nonmag-
netic and magnetic order parameters:

py = �2q�xSy sin�qx� ,

pz = �2q�xSz sin�qx� ,

exy = − c̄xy�3�xSy cos�qx� ,

exz = − c̄xz�3�xSz cos�qx� . �6�

Notice that, here, the improper polarizations pz and py can
only occur in magnetic modulated phases �q�0� involving
at least two irreducible components of the magnetic modula-
tion �note again that we are ignoring the eventual commen-
surate nature of the modulation wave vector� while the lattice
deformations can be maintained even in the case of a homo-
geneous phase. By substituting Eq. �6� into Eq. �5� one can
then express the free-energy density as a function of the
magnetic order parameters,

g�x� = �t cos2�qx� −
q2

4
sin2�qx� +

q4

4
cos2�qx���x

2

+
1

4
�cos4�qx� + 4�q2 sin2�qx�cos2�qx���x

4 + �t − t1�Sy
2

+
1

4
Sy

4 +
1

2
gSy

2�x
2 cos2�qx� −

1

2
�2

2q2Sy
2�x

2 sin2�qx�

+ �t − t2�Sz
2 +

1

4
Sz

4 +
1

2
hSz

2�x
2 cos2�qx�

−
1

2
�2

2q2Sz
2�x

2 sin2�qx� . �7�

Here, we have defined g=2�1− c̄xy�3
2 and h=2�1− c̄xz�3

2.
In the free-energy density �Eq. �7��, the order parameter

Ax plays a central role not only because it softens at a higher
temperature but also because it is the one that gives rise to
the spin modulation wave. It is the instability of this primary
mode that can trigger the stabilization of a modulation wave
of Sy or Sz, whose intrinsic instabilities would otherwise give
rise to homogeneous phases. In fact, by imposing in Eq. �7�
the conditions �g�x�

�Sy
=0 and �g�x�

�Sz
=0 one readily obtains

Sy
2 = �yF

2 cos2�qx� + �yA
2 sin2�qx� , �8a�

Sz
2 = �zF

2 cos2�qx� + �zA
2 sin2�qx� �8b�

with �yF
2 =−�2�t− t1�+g�x

2�, �yA
2 =−�2�t− t1�−�2

2q2�x
2�, �zF

2

=−�2�t− t2�+h�x
2�, and �zA

2 =−�2�t− t2�−�2
2q2�x

2�.
As seen, it is the onset of a longitudinal modulation wave

Sx=�x cos�qx� that can provoke, via the biquadratic coupling
terms between the magnetic parameters, to the modulation
wave of the components of Sy or Sz. It is also clear that these
secondary magnetic modulations can be mainly established
either in phase ��yF or �zF� or in quadrature ��yA or �zA� with
respect to Sx, depending on the values of the coefficients.
These two possible sets of components of the secondary
magnetic modulation have in fact different symmetries and
couple, consequently, to different homogeneous parameters.
For example, as we have seen in Eq. �6�, py
=�2qSy�x sin�qx� and exy =−c̄xy�3Sy�x cos�qx�. If, for ex-
ample, Sy =�yF cos�qx�, then py =�2q�yF�x sin�qx�cos�qx�
and exy =−c̄xy�3�yF�x cos2�qx�. That is, if Sy is in phase with
Sx, the value of the polarization wave, averaged over one
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period of the modulation, is null, 	py
=0, while the lattice
deformation exy is not �	exy
�0�. Conversely, if Sy
=�yA sin�qx�, then 	py
�0 and 	exy
=0. Therefore, the sta-
bilization of an improper polarization 	py
 or 	pz
 requires
the stabilization of secondary spin waves Sy or Sz in quadra-
ture with Sx. Notice that, in any case, the secondary spin
waves are triggered by the primary order parameter and, con-
sequently, share the same wave vector. All these features are,
in fact, observed experimentally.

By replacing Eq. �8� into Eq. �7�, one can then express the
free-energy density as a function of the new set of magnetic
order parameters �x, �yF, �yA, �zF, and �zA,

g�x� = �t cos2�qx� −
q2

4
sin2�qx� +

q4

4
cos2�qx���x

2

+
1

4
�cos4�qx� + 4�q2 sin2�qx�cos2�qx���x

4

−
1

4
��yF

2 cos2�qx� + �yA
2 sin2�qx��2

−
1

4
��zF

2 cos2�qx� + �zA
2 sin2�qx��2. �9�

D. Free energy of the competing phases

The general free-energy functional G can now be obtained
by averaging �Eq. �9�� over one period of the magnetic
modulation �G= 1

x0
�0

x0g�x�dx�. This leads to

G =
1

2
�t −

q2

4
+

q4

4
��x

2 +
1

4
�3

8
+

�q2

2
��x

4

−
1

4
�3

8
��yF

4 + �yA
4 � +

1

4
�yA

2 �yF
2 �

−
1

4
�3

8
��zF

4 + �zA
4 � +

1

4
�zA

2 �zF
2 � . �10�

Notice that in Eq. �10� the values of �yF, �yA, �zF, and �zA,
given by Eq. �8�, correspond to the equilibrium values if �x
minimizes G. Therefore, the stability of the different compet-
ing magnetic phases can be simply determined by imposing
the equilibrium condition �G

��x
=0, together with the stability

conditions �2G
��i

2 �0 and det� �2G
��i�� j

��0. For simplicity, we will
consider only the potential stability of the phases that are
experimentally observed. Consequently, we will ignore
mixed phases where two or more of the secondary param-
eters �yF, �yA, �zF, and �zA coexist, or ferroelastic phases
with nonzero �zF or �yF. We will focus on the competition
between four relevant phases: the L-INC phase, the cycloidal
polar phases corresponding to the order parameters �x and
�yA �P� �b� , Cycl-XY� or �x and �zA �P� �c�, Cycl-XZ� and the
homogeneous A-AFM phase.

1. Phase 1: The AFM phase (�xÅ0 and �y=�z=0)

The free energy corresponding to the homogeneous �q�
=0� antiferromagnetic phase is G1=−t2 and the temperature

dependence of the antiferromagnetic order parameter is �x

=−2t. This phase is potentially stable if t�0.

2. Phase 2: The L-INC phase (�xÅ0 and �y=�z=0)

The free energy �G2� and the amplitude of the magnetic
modulation ��x� for this modulated phase �q� �0� are given
by

G2 = −
1

4

�t −
q2

4
+

q4

4
�2

�3

8
+

1

2
�q2� , �11a�

�x
2 = −

�t −
q2

4
+

q4

4
�

�3

8
+ �

q2

2
� . �11b�

This phase will be stable if �t− q2

4 + q4

4 ��0 �that is, �x
2�0�.

The temperature dependence of the incommensurate modu-
lation wave vector, which can be obtained from the equilib-
rium condition

�G2

�q =0, is given by the equation,

2q�t −
q2

4
+

q4

4
���q2 −

1

2
��3

8
+ �

q2

2
� −

�

2
�t −

q2

4
+

q4

4
��

= 0. �11c�

The solutions q=0 and �t− q2

4 + q4

4 �=0 correspond to the non-
modulated antiferromagnetic phase and to the paramagnetic
phase, respectively. The other solutions are

q�
2 =

1

6�
��� − 3� � 31 +

�2

9
�1 + 48t� +

4

3
�� .

�11d�

As can be seen from Eq. �11c�, at the second-order transition
point from the paramagnetic to the longitudinal incommen-
surate phase ��x

2→0�, these additional solutions correspond
to q+

2 = 1
2 and q−

2 =− 3
4� . Since � can be a positive constant,

this latter solution must be discarded and the former one
identified as that corresponding to the incommensurate
phase. Then, from the condition G2�ti�=0, one finds ti=

1
16.

The experimental and reduced temperature and wave-vector
scales are therefore related as

t =
�T − T0�

16�Ti − T0�
,

q�t� =
1
2

k�T�
k�Ti�

, �11e�

where Ti represents the experimental temperature of the zero
magnetic field transition between the paramagnetic and the
incommensurate phases.

3. Phase 3: The Cycl-XY phase
(�xÅ0 and �yAÅ0;�zA=�zF=�yF=0)

If, in addition to the primary longitudinal modulation �x
�0 there exists a secondary modulation of the y component
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of the Mn spins that is in quadrature with �x, then the phase
will develop, as seen, a spontaneous electrical polarization
along the b axis given by py =�2q�x�yA while the ferroelastic
deformation averages out. The energy of this ferroelectric
phase is

G3 = −
1

4

�t −
M

4
q2 +

1

4
q4�2

�3

8
+

�

2
q2 − Nq4� −

3

8

��t − t1��2

4
, �12a�

where M =1−
3�2

2

2 and N=
3�2

4

8 . The amplitude of the primary
modulation and the stability conditions are, respectively,
given by

�x
2 = −

�t −
M

4
q2 +

1

4
q4�

�3

8
+

�

2
q2 − Nq4� �12b�

and

�t −
M

4
q2 +

1

4
q4� � 0,

�3

8
+

�

2
q2 − Nq4� � 0,

�2
2q2�x

2 � ay�t − t1� . �12c�

As before, the temperature dependence of the incommensu-
rate modulation wave vector can be obtained from the equi-
librium condition

�G3

�q =0. This leads to the equation,

2q�t − M
q2

4
+

q4

4
���q2 −

M

2
��3

8
+ �

q2

2
− Nq4�

− ��

2
− 2Nq2��t − M

q2

4
+

q4

4
�� = 0 �12d�

and to a temperature dependence of the cycloidal wave vec-
tor given by one real root of the equation,

−
N

2
q6 +

3

8
�q4 + �3

8
−

�M

8
− 2Nt�q2 + � 3

16
M −

�t

2
� = 0.

�12e�

4. Phase 4: The Cycl-XZ phase
(�xÅ0 and �zAÅ0;�zF=�yA=�yF=0)

This case is similar to the previous one but with the cyc-
loid lying on the xz plane and the spontaneous polarization
directed along the z axis �pz=�2q�x�zA�. The energy of this
phase is given by

G4 = −
1

4

�t −
M�

4
q2 +

1

4
q4�2

�3

8
+

�

2
q2 − N�q4� −

3

8

��t − t2��2

4
, �13a�

where M�=1−
3�2

2

2 and N�=
3�2

4

8 . The amplitude of the primary
modulation and the stability conditions are, respectively,
given by

�x
2 = −

�t −
M�

4
q2 +

1

4
q4�

�3

8
+

�

2
q2 − N�q4� �13b�

and

�t −
M�

4
q2 +

1

4
q4� � 0,

�3

8
+

�

2
q2 − N�q4� � 0,

�2
2q2�x

2 � �t − t2� . �13c�

Finally, the equilibrium condition
�G4

�q =0 leads to the equa-
tion

−
N�

2
q6 +

3

8
�q4 + �3

8
−

�M�

8
− 2N�t�q2 + � 3

16
M� −

�t

2
� = 0,

�13d�

which can be solved in order to q to give the temperature
dependence of the incommensurate modulation wave vector,
common to both magnetic order parameters.

IV. MODELING THE PHASE DIAGRAMS OF THE RMnO3

COMPOUNDS

As seen above, the crystalline distortion that leads to mag-
netic frustration and, eventually, to the ferroelectric order,
mainly originates from the ionic radii of the rare-earth ions.
This geometric effect can be controlled either in a stepwise
manner, by using rare-earth elements with different ionic ra-
dius �from R=La3+ to Pr3+, Eu3+, Gd3+, Tb3+, Dy3+, Ho3+,
Yb3+, and Lu3+�, or quasicontinuously, by tuning the average
rare-earth radius in solid solutions in which the R3+ ion is
partially replaced by one isoelectric ion with different ionic
radius, as in the case of the Eu1−xYxMnO3 mixed
system.14,61–63 In the following we will analyze these two
cases within the scope of the model presented above, as il-
lustrative examples.

A. Pure compounds

Figure 2 shows the experimental temperature dependence
of the modulation wave vector in the Gd, Tb, Dy, and Ho
compounds �dots; data taken from Ref. 25�. As seen in the
preceding section, the evolution of the modulation wave vec-
tor with temperature in the L-INC phase is solely deter-
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mined, in the model, by the signal and magnitude of the
coupling constant �, along with the value of T0. For a given
compound, these two constants can be estimated by fitting
q+�t ,�� given by Eq. �11d� to the experimental �inc�T� curve,
and by taking into account that the relationship between the
experimental and the reduced temperature and wavelength
scales is given by Eq. �11e�. The curves fitted to the experi-
mental data in this way �see lines in Fig. 2� reproduce well
the essential features of the observed behavior of the modu-
lation wavenumber ��T�.

In the L-INC phase and on cooling, ��T� decreases for Gd
and Tb and increases for Dy and Ho. This behavior implies a
transition from a positive to a negative �, as the ionic radius
Rion decreases. As shown in Fig. 3�a� �see also Table III�, �
varies almost linearly with the ionic radius of the rare-earth
elements, from ��1 for Gd to ��−0.7 for Ho. The value
�=0, for which the modulation wavelength is independent
of the temperature, can be estimated from the linear fit as
R�105.7 pm, a value that is intermediate between Tb
�106.3 pm� and Dy �105.2 pm�. Given the linear relationship
between ��Ti� and Rion, this value would correspond to the
commensurate value ��Ti��1 /3. These conclusions are in
excellent agreement with the behavior experimentally ob-
served in the Tb1−xDyx MnO3, where a spin modulation with
a temperature independent wave number �� 1

3 is observed
for compositions in the range 0.5�x�0.68 �Ref. 64�.

The dependence of T0 on the rare-earth ionic radius is not
very pronounced for the Gd, Tb, Dy, and Ho compounds,
varying only slightly within the range 32–36 K �see Fig.
3�b��. It is interesting, however, to consider how this param-
eter varies outside this range of rare-earth elements. As seen,
T0 corresponds to the temperature for which the magnon
branch softens at the center of the Brillouin zone. For com-
pounds such as LaMnO3, PrMnO3, NdMnO3, and SmMnO3,
for which frustration does not occur, T0 corresponds to the
critical temperature of the direct transition between the PM
and the A-AFM phases. This implies that T0 decreases rather
steeply as Rion decreases in the range 107 pm�Rion
�117 pm �see inset of Fig. 3�b��, stabilizing at a more or
less constant values once magnetic frustration is achieved
and the intermediate L-INC phase is induced �within the
range from Eu to Ho�.

For the case of EuMnO3 there are no reported data on the
temperature dependence of ��T� within the narrow tempera-

ture range of stability of the L-INC phase �50 K�T
�46 K�. However, from the linear dependence of � and
��Ti� on Rion, one can estimate, for this compound �Rion
=108.7 pm�, the values �=1.36 and ��Ti��0.19. Then, if
we adopt these values, we are left with a single parameter
�T0� to fit the critical temperature of the transition between
the L-INC and the A-AFM phases. The fit of this unique
parameter gives T0�48 K, a value that is entirely consistent
with the general trend of T0�Rion� seen in the inset of Fig. 3.
In addition, the set of parameters thus found for the Eu com-
pound ��, T0 and ��Ti�� allows us to estimate the function
��T� within the L-INC phase. This estimated temperature
dependence of the modulation wave number is depicted in
Fig. 2.

For the cases of the Tb and the Dy systems, the ground
state is the cycloidal modulated phase �Cycl-XY�, which is
polar �P� �b��. Here, we have to include the analysis of the
potential stability of this additional phase and tune the addi-
tional parameters �2 and T1 in order to account for both the
observed transition temperature from the L-INC to the

TABLE III. The values of the model parameters �, �2, T0, and
T1 that allow the simulation of the phase-transition sequences ob-
served experimentally. The values of Tinc and ��Ti� are also given.

� �2 T0 T1 Tinc ��Ti�

EuMnO3 1.35 48 50 0.198

GdMnO3 1 35 40 0.242

TbMnO3 0.2 0.6 31.5 24 38 0.288

DyMnO3 −0.15 0.3 33 15 38 0.36

HoMnO3 −0.68 35 44 0.395
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FIG. 2. �a� Experimental �dots� and simulated �lines� tempera-
ture dependences of the modulation wave numbers for the RMnO3

compounds �R=Gd, Tb, Dy, and Ho�. For EuMnO3 only the simu-
lation is shown �see text�.
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FIG. 3. �Color online� The dependence of the parameters �a� �
and �b� T0 on the ionic radius of the rare-earth ion R �from Eu to
Ho�. The inset in �b� shows the variation in T0 over an extended
range that includes R=La, Sm Pr, Nd, Yb, and Lu �see text�.
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Cycl-XY phase and the temperature dependence of the
modulation wave vector in the range of stability of this lower
temperature phase. As seen in Fig. 4, the values given in
Table III for these additional parameters allow the simulation
of the phase sequence PM→L-INC→Cycl-XY observed in
these compounds at zero magnetic field. It is also possible to
calculate the temperature dependence of both the electric po-
larization and the modulation wave vector near the transition
from the L-INC to the Cycl-XY phase. These quantities are
also plotted in Fig. 4 for these two intermediate compounds.

B. Solid solutions: The example of Eu1−xYxMnO3

The model can also be applied to the description of the
phase diagrams of solid solutions in which the average value
of the radius of the rare-earth element is tuned by the partial
substitution of isoelectric ions. Here, we will analyze, as one
illustrative example, the case of the Eu1−xYxMnO3 mixed
system.

In the Eu1−xYxMnO3 solid solution, the Pnma orthorhom-
bic symmetry is maintained only for x�0.6. Above this con-
centration, traces of the P63cm hexagonal phase of YMnO3
appear. As x increases, the volume and the orthorhombic
distortion of the unit cell cross the values found in GdMnO3
�x�0.2� and TbMnO3 �x�0.8�. Despite the continuous
shrinking of the lattice volume, the in-plane orthorhombic
distortion, parameterized by �= �a−c� / �c+a�, tends to satu-
rate near x�0.4 �Ref. 14�. Notice that the inequality of the
lattice constants a and c reflects the tilting of the oxygen

octahedral around the b axis and the consequent reduction in
Mn-O-Mn bond angle. It is likely that this reduction may not
be the only factor affecting the spin system. The shrinkage of
the unit cell and the A-site disorder may also affect the or-
bital overlap and the magnetic exchange.

In the composition range 0�x�0.5, the �x-T� diagram of
the solid solution has been investigated by different
groups.14,61,62 The temperature range of stability of the
L-INC phase increases from 51 K�T�46 K at x=0 to
45 K�T�22 K at x=0.5. For x�0.2, the A-AFM phase is
stabilized at low temperatures, although within a temperature
band that rapidly narrows as x decreases. For x�0.3 the
A-AFM phase is suppressed and the low-temperature phase
corresponds to a P � z ferroelectric phase. For x=0.2 the
canted ferromagnetism �M � y� characteristic of the A-AFM
coexists, at low temperatures, with the P � z polarization.14

This coexistence may signal either the stabilization of a more
complex magnetic phase14 or a coexistence of both phases.
Although there is no direct experimental evidence, the P � z
phase is attributed to the stabilization of the Cycl-XZ
phase,60 as observed in GdMnO3 under a magnetic field.

In principle, for a solid solution, one can find the adequate
model parameters by following the procedure described
above for the case of the pure systems. That is, one can fit,
for each composition, the transition temperatures and the
temperature dependences of the modulation wave vectors
within the ranges of stability of the different phases ob-
served. Quite often, complete experimental information is
not available but, for Eu1−xYx MnO3, it exists at least in part.

The experimental temperature dependence of the mag-
netic modulation wave number ��T� is shown in Fig. 5 for
the compositions x=0.2, x=0.3, and x=0.4 �Ref. 62�. The
curve predicted for EuMnO3 �see above� is also shown for
comparison. For a given composition, the model parameters
can be fit in order to simultaneously reproduce ��x ,T� and
the temperature ranges of stability of the phases observed.
For the three compositions shown, the values of the model
parameters obtained in this way are listed in Table IV. Notice
that the parameters � and T0 can be determined for the three
compositions because the L-INC phase is always stable.
However, for x=0.3, the wave number corresponding to the
Cycl-XZ phase locks at the commensurate value �= 1

4 .
Therefore, only in the case of x=0.4, where both the incom-
mensurate Cycl-XY and Cycl-XZ are stable, can one explic-
itly determine the values of �2, �2, T1, and T2. This has been
done by carefully fitting, for this composition, the tempera-
ture ranges of stability of the two cycloidal phases and the
experimental temperature dependence of the modulation
wave number �see Fig. 6�a��. The parameters adjusted is this
way allow us to calculate the temperature dependence of the
electrical polarizations Py and Pz and to describe the polar-
ization rotation observed at the transition between the
Cycl-XY and the Cycl-XZ phases �Fig. 6�b��. Due to the
limited experimental information, we have decided to main-
tain, for the other compositions, the values of �2, �2, and T1
as determined for x=0.4.

As seen above, the cycloidal-XZ spin modulation ob-
served for x=0.3 is commensurate ��=1 /4�. In an incom-
mensurate phase, we consider the modulation wave number
as a variational parameter whose value, at equilibrium, re-
sults from the condition �G

�q =0.
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FIG. 4. �Color online� Polarization, modulation wave vector,
and free energy of the phases L-INC, Cycl-XY, and A-AFM as
functions of temperature for ��a�–�c�� TbMnO3 and ��d�–�f��
DyMnO3. The model parameters are given in Table III and the
reference energy corresponds to that of the paramagnetic phase.
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However, a given commensurate phase has a fixed ratio-
nal modulation wave number �= n

p . In general, this fixed
value of � costs energy, when compared to the incommensu-
rate solution considered above. This cost may be compen-
sated by the additional terms �umklapp invariants� that are,
in this case, allowed by symmetry. These umklapp terms are
of degree 2p �p�2� for a commensurate wave number �
= n

p �n and p integers�. In the case of the �=1 /4 cycloidal
phase observed for x=0.3, we have assumed, for simplicity,
that the effect of the lock-in potential Uumklapp=−
�x

8 could
be described by means of effective fourth degree terms in the
primary order-parameter amplitude �Uumklapp� 1

4
ef f�x
4�.

This approximation can be justified by the fact that the �
=1 /4 phase is observed in a temperature range well below
Ti, implying that the temperature dependence of the ampli-
tude of the order parameter �x is already weak ��x��T
−Ti�1/2�. Consequently, the temperature dependence of 
ef f is
not important and can be neglected. In other words, it is not
the degree of the lock-in term but rather its presence and
magnitude that modify the free energy. In this approxima-
tion, the energy of the �=1 /4 phase can be estimated by
replacing in the incommensurate free energy q�t�= 1

2
��T�
��Ti�

by
qc= 1

2
1/4

��Ti�
and by adding the contribution of the effective

lock-in potential averaged over a period of the modulation
wave, U=− 3

8 � 1
4
ef f�x

4�. For x=0.3, we have used in the simu-
lation the minimum value of 
ef f required to stabilize the
commensurate phase and the value of T2 necessary to fit the

observed transition temperature �
ef f =0.003�. We have
maintained this value of 
ef f to estimate the free energy of
the �=1 /4 phase for all the other compositions.

Under these circumstances, for any given value of x
within the range 0�x�0.5, the values of the parameters �,
T0, Tinc, and ��Ti� can be interpolated by polynomial fitting.
By doing so, we maintain a single adjustable parameter �T2�
to model the observed �T ,x� phase diagram of the solid so-
lution. Notice that the value of T2 solely influences the range
of stability of the Cycl-XZ phase and the temperature depen-
dence of the modulation wave number within this phase. As
seen in Fig. 7, the experimental phase diagram taken from
Ref. 14 can be very well reproduced if one assumes that T2
decreases smoothly with x as illustrated in the inset of the
figure.

V. CONCLUDING REMARKS

The present paper described one unified Landau model for
the phase diagrams of the rare-earth orthomanganese com-

TABLE IV. The values of the model parameters �, �2, �2 T0, T1, and T2 allowing the simulation of the �T-x� dependence of the
modulation wave vector and of the phase-transition sequences observed experimentally in the three compositions. The experimental values
of Tinc and ��Ti� are also given. The 
ef f�1 /4� coefficient corresponds to the effective lock-in potential to the C phase with �=1 /4.

� �2 �2 T0 T1 T2 Tinc ��Ti� 
ef f�1 /4�

EuMnO3 1.35 48 50 0.198 0.003

Eu0.8Y0.2 MnO3 1.04 0.5 0.7 38.68 23.5 25.85 48 0.243 0.003

Eu0.7Y0.3 MnO3 0.59 0.5 0.7 35.47 23.5 23.03 47 0.266 0.003

Eu0.6Y0.4 MnO3 −0.04 0.5 0.7 33.26 23.5 17 46 0.290 0.003
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FIG. 5. Experimental �dots� and simulated �lines� of the tem-
perature dependence of the wave numbers of the magnetic modula-
tion in the Eu1−xYx MnO3 mixed system for the compositions x
=0.2, x=0.3, and x=0.4. The experimental data was taken from
Ref. 62. The predicted modulation wave number for pure EuMnO3

is also shown for comparison.
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tion between the Cycl-XY and the Cycl-XZ phases is well repro-
duced by the model.
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pounds. The common symmetry ��B2� of the primary mag-
netic order parameters over the whole set of the orthorhom-
bic RMnO3 compounds was stressed and used to obtain, in
the simplest possible terms, an unified phenomenological de-
scription of the phase-transition sequences observed. Besides
the primary parameter, the model also includes two addi-
tional magnetic modes of symmetry ��A2� and ��A1�, which

couple biquadratically to the primary mode. This set of three
active magnetic modes of distinct symmetries can be related
to the softening of the three spatial components of the A�
basis mode of the Mn3+ spins. As in the case of typical dis-
placive modulated systems, the type-II Landau description of
modulated phases was used to generate adequate free-energy
functionals for the different competing phases.

The model is rooted in exact-symmetry considerations.
This fact guarantees the consistency of the overall picture
and elucidates the possible coupling between the different
degrees of freedom. In particular, the potential ferroelectric
and ferroelastic properties of a given magnetic phase can be
clearly established, either by searching for the allowed mixed
invariants that are linear on a particular electric polarization
or lattice deformation, or by establishing, directly, the mag-
netic symmetry of the ordered phase.

The model is capable of generating the observed phase
diagrams and account for the polar properties of a given
compound or solid solution. However, magnetoelectric bifer-
roicity and ferromagnetoelectricity �the linear magnetoelec-
tric effect� are here entirely excluded by symmetry. That is,
the phases considered in the present model �and observed
experimentally in these compounds at zero magnetic field�
may be improper ferroelectric phases but are not multiferroic
phases, at least if the standard notion of ferroic order is
adopted. Notice, for example, that the phase transitions ob-
served in TbMnO3 corresponds, on cooling, to the sequence
�Pnma��→Pa�P

1̄1S

nma�→Pa�P
1̄1S

n21a�. This last phase, Pa�P
1̄1S

n21a�,
is ferroelectric �P� �b�� but it is neither ferromagnetoelectric
nor multiferroic. Also, the thermally induced polarization ro-
tation observed in Eu0.5Y0.5 MnO3 corresponds to a phase
transition involving the cycloidal phases Cycl-XY
��Pa�P

1̄SS

n21a�� , P� �b�� and Cycl-XZ ��Pa�P
1̄SS

nm21�� , P� �c�� which,

once again, have symmetries that are incompatible with fer-
romagnetoelectricity or multiferroicity.
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